Remont-gazeley.ru

Про отечественный автопром
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Карбюраторы грузовых автомобилей

Карбюраторы грузовых автомобилей

Карбюраторы двигателей грузовых автомобилей, как правило, состоят из трех основных частей: верхней, средней и нижней. В верхней части расположены крышка поплавковой камеры, воздушный патрубок и воздушная заслонка. В средней части расположены поплавковая и смесительная камеры, главные и дополнительные дозирующие устройства. Нижняя часть представляет собой патрубок с дроссельными заслонками и механизмом ограничителя максимальной частоты вращения коленчатого вала.

Для улучшения распределения смеси по группам цилиндров двигателя карбюраторы делают двухкамерными с параллельным действием. Такие карбюраторы имеют поплавковую камеру, воздушную заслонку, ускорительный насос и экономайзер, общие для двух смесительных камер, а главное дозирующее устройство и систему холостого хода — отдельные. Все три части карбюратора уплотняются прокладками и соединяются в одно целое болтами.

Карбюратор К-88А (рис. 30) устанавливают на восьмицилиндровом V-образном двигателе автомобиля ЗИЛ-130.

Рекламные предложения на основе ваших интересов:

Устройство. Карбюратор двухкамерный, балансированный, с падающим потоком смеси. Каждая смесительная камера обеспечивает горючей смесью четыре цилиндра.

В смесительных камерах карбюратора установлены сдвоенные диффузоры, состоящие из большого и малого диффузоров. Этим достигается значительное увеличение разрежения в устье главного распылителя при относительно небольшом расходе воздуха. Дроссельные заслонки жестко закреплены на одной оси и открываются одновременно, чем обеспечивается параллельная работа смесительных камер. С осью дроссельных заслонок связан исполнительный механизм дентробежно-вакуумного ограничителя максимальной частоты вращения коленчатого вала двигателя.

Рис. 30. Схема карбюратора К-88А:
1 — главный жиклер, 2— поплавок, 3 — корпус поплавковой камеры, 4 — игольчатый клапан, 5 — сетчатый фильтр, 6— балансировочный канал, 7 — жиклер холостого хода, 8 — воздушный жиклер главного дозирующего устройства, 9 — распылитель, 10 — малый диффузор, 11 — большой диффузор, 12 — нагнетательный клапан, 13 — полый винт, 14 — распылитель ускорительного насоса, 15 — отверстие в воздушной заслонке, 16 — воздушная заслонка, 17 — предохранительный клапан, 18 — воздушный патрубок, 19 — клапан экономайзера, 20 — толкатель клапана экономайзера, 21 — шток клапана экономайзера, 22 — планка, 23 — шток поршня ускорительного насоса, 24 — тяга, 25 — поршень, 26 — обратный клапан, 27 — серьга, 28 — рычаг дроссельных заслонок, 29 — жиклер полной мощности, 30 — дроссельная заслонка, 31 — винты регулировки холостого хода, 32 — регулируемое отверстие системы холостого хода, — нерегулируемое отверстие, 34 — фланец крепления карбюратора к впускному трубопроводу двигателя

Работа. Топливо поступает в карбюратор через сетчатый фильтр и игольчатый клапан, который управляется поплавком.

При пуске холодного двигателя воздушную заслонку закрывают. Дроссельные заслонки при этом автоматически приоткрываются на некоторый угол, так как они связаны с воздушной заслонкой.

Вращение коленчатого вала двигателя стартером в момент пуска создает большое разрежение в смесительной камере и под дроссельными заслонками. Это вызывает обильное истечение топлива из жиклеров главных дозирующих устройств и систем холостого хода. Образуется богатая горючая смесь, необходимая для пуска двигателя.

После пуска двигателя расход воздуха через карбюратор возрастает и воздушная заслонка должна быть открыта. Если это не будет сделано своевременно, предохранительный клапан 17 в воздушной заслонке срабатывает, тем самым уменьшает разрежение в смесительной камере, предотвращая переобогащение смеси.

На холостом ходу двигателя горючая смесь приготавливается системой холостого хода карбюратора. При этом дроссельные заслонки закрыты, а воздушная заслонка открыта полностью. Под дроссельными заслонками создается максимальное разрежение, которое передается через отверстие и эмульсионные каналы и жиклерам холостого хода. Под действием этого разрежения топливо поступает через главные жиклеры к жиклерам холостого хода, в которых воздух, поступающий через верхние отверстия жиклеров, перемешивается с топливом и образует эмульсию.

Эмульсия движется по эмульсионным каналам и через регулируемые отверстия выходит в задроссельное пространство смесительных камер. Через отверстия к эмульсии дополнительно примешивается воздух, что улучшает качество эмульсии. Если при холостом ходе дроссельные заслонки начнут приоткрываться, эмульсия будет выходить и через отверстия, обеспечивая плавный переход двигателя на средние нагрузки.

На средних нагрузках двигателя с увеличением открытия дроссельных заслонок система холостого хода уменьшает подачу эмульсии, так как разрежение перемещается в область диффузоров и в работу вступает главная дозирующая система. При этом топливо из поплавковой камеры через главные жиклеры и жиклеры полной мощности поступает в распылители, смешиваясь с воздухом, который проходит через воздушные жиклеры.

Смешивание топлива с воздухом в распылителях приводит к образованию эмульсии, которая выходит через кольцевые щели малых диффузоров в смесительную камеру. Одновременно в распылители начинает поступать воздух и через систему холостого хода, замедляя повышение разрежения у главных жиклеров.

В результате происходит пневматическое торможение вытекающего топлива и горючая смесь обедняется.

Таким образом, горючая смесь на режиме средних нагрузок приготовляется совместным действием главных дозирующих устройств и систем холостого хода. Регулировка жиклеров этих устройств обеспечивает экономичную работу двигателя в наиболее часто встречающихся режимах.

На полной нагрузке двигателя горючая смесь обогащается экономайзером с механическим приводом. Как только дроссельные заслонки будут открыты более чем на 3/4 хода, толкатель клапана экономайзера опускается и нажимает на клапан, открывая его. При этом топливо начинает поступать дополнительно в распылитель главного дозирующего устройства. Необходимая дозировка топлива в этом случае осуществляется жиклером полной мощности, который имеет сечение большее, чем сечение главного жиклера. Вследствие поступления основного количества топлива от главного жиклера и дополнительного топлива через экономайзер к жиклеру полной мощости происходит обогащение горючей смеси, необходимое для повышения мощности двигателя до максимальной.

При резком открытии дроссельных заслонок обогащение смеси происходит за счет работы ускорительного насоса. Оно сопровождается перемещением вниз планки, которая связана с дроссельными заслонками рычагом, серьгой и тягой. При перемещении вниз планка через пружину воздействует на поршень, опуская его.

Топливо под давлением поршня закрывает обратный клапан и начинает перетекать по каналу к нагнетательному клапану. Под действием давления клапан открывается, и топливо в виде тонких струек впрыскивается через распылитель ускорительного насоса в смесительные камеры, обогащая горючую смесь.

Пружина, установленная между планкой и поршнем насоса, служит для обеспечения впрыска топлива с некоторым запаздыванием. Это необходимо для улучшения смесеобразования в карбюраторе и защиты привода от перегрузок.

Ограничитель максимальной частоты вращения коленчатого вала двигателя ЗИЛ-130 содержит центробежный датчик и исполнительный диафрагменный механизм. Датчик имеет привод от распределительного вала двигателя и закреплен на крышке распределительных шестерен. Исполнительный механизм встроен в нижний патрубок карбюратора и связан с осью дроссельных заслонок.

Работа ограничителя основана на использовании разрежения в диафрагменном исполнительном механизме, который сообщается трубопроводом с датчиком, а также каналами со смесительной камерой и воздушным патрубком карбюратора. Диафрагменный механизм воздействует на ось дроссельных заслонок, прикрывая их в случае возникновения максимальной частоты вращения коленчатого вала двигателя.

Рис. 31. Схема карбюратора К-126Б:
1 — шток ускорительного насоса, 2— крышка поплавковой камеры, 3—воздушный жиклер главного дозирующего устройства, 4— малый диффузор, 5 — фланец крепления воздушного фильтра, 6 — воздушная заслонка,7 — топливный жиклер холостого хода, 8 — распылитель ускорительного насоса и экономайзера, 9 — нагнетательный клапан, 10 — воздушный жиклер холостого хода, 11— сетчатый фильтр, 12 — игольчатый клапан, 13—поплавок, 14 — клапан датчика ограничителя частоты вращения коленчатого вала, 15—пружина, 16 — ротор датчика ограничителя, 17 — внешняя полость датчика ограничителя, 18 — фильтр для смазки подшипника ротора ограничителя, 19 — внутренняя полость датчика ограничителя, 20 — смотровое окно поплавковой камеры, 21 — трубопровод, 22 — диафрагма исполнительного механизма ограничителя, 23—пружина привода дроссельных заслонок, 24 — вакуумный жиклер, 25 —ось дроссельных заслонок, 26 — главный жиклер, 21 — эмульсионная трубка главного дозирующего устройства, 28 — дроссельная заслонка, 29 — винт регулировки холостого хода (качества смеси), 30 — нижний патрубок карбюратора, 31 — рычаг управления дроссельными заслонками, 32 —обратный клапан ускорительного насоса, 33 — клапан экономайзера

Карбюратор К-126Б (рис. 31) устанавливают на восьмицилиндровые V-образные двигатели 3M3-53 автомобилей ГАЗ-53А и их модификаций.

Устройство и принцип действия этого карбюратора такие же, как карбюратора К-88А, но имеются некоторые конструктивные отличия.

Верхняя часть карбюратора является одновременно крышкой поплавковой камеры и входным воздушным патрубком с воздушной заслонкой. Она имеет съемный фланец для установки воздушного фильтра. В крышке поплавковой камеры смонтированы рычаги привода ускорительного насоса и экономайзера.

В средней части карбюратора расположены поплавковая камера и две смесительные камеры, в которых расположены по два диффузора (большой и малый), а также все основные дозирующие устройства и системы карбюратора.

Нижняя часть карбюратора является продолжением смесительных камер и выполнена в виде сдвоенного патрубка. В нем на одной оси смонтированы дроссельные заслонки. Ось 25 дроссельных заслонок имеет выход на обе стороны патрубка. С одной стороны к оси прикреплен рычаг управления дроссельными заслонками, с другой — исполнительный диафрагменный механизм ограничителя максимальной частоты вращения коленчатого вала двигателя.

Дозирующие системы в обеих смесительных камерах одинаковы. Причем главное дозирующее устройство и система холостого хода — индивидуальные для каждой смесительной камеры, а пусковое устройство, экономайзер и ускорительный насос — общие.

Компенсация горючей смеси в главных дозирующих устройствах осуществляется путем пневматического торможения топлива в эмульсионном колодце распылителя главного жиклера. Воздух в колодец подводится через воздушный жиклер, снабженный эмульсионной трубкой 27. В эмульсионной трубке сделаны отверстия, влияющие на регулировку состава горючей смеси в режиме средних нагрузок. Карбюратор балансируется с помощью воздушного канала, выполненного в литой крышке поплавковой камеры.

Работа. Топливо, поступающее в карбюратор через штуцер топливопровода в крышке поплавковой камеры, проходит через сетчатый фильтр в поплавковую камеру. Уровень топлива регулируется автоматически по мере расхода поплавком и игольчатым клапаном. Для предотвращения открывания игольчатого клапана при колебаниях уровня топлива на неровностях дороги клапан имеет демпфирующую пружину.

При пуске холодного двигателя водитель с помощью троса, выведенного в кабину, поворачивает воздушную заслонку 6 в закрытое положение. При этом система рычагов, связывающих ось дроссельных заслонок с воздушной заслонкой, заставляет дроссельные заслонки приоткрываться на небольшой угол (примерно на 12°). Вследствие этого обеспечивается высокое разрежение в малых диффузорах при вращении коленчатого вала и смесь сильно обогащается. После пуска двигателя излишнее обогащение смеси предотвращается срабатыванием предохранительных клапанов на воздушной заслонке или открытием ее.

На режиме холостого хода работают системы холостого хода обеих смесительных камер карбюратора, дроссельные заслонки прикрыты и разрежение создается под ними. По каналам системы холостого хода это разрежение передается к главным жиклерам и поэтому топливо перетекает к жиклеру холостого хода. Пройдя топливные жиклеры холостого хода, топливо попадает в эмульсионные каналы, где к нему через воздушные жиклеры холостого хода примешивается воздух и образуется эмульсия. Эта эмульсия движется по каналам и проходит в задроссельное пространство смесительных камер. Для получения необходимого состава горючей смеси сечения выходных отверстий эмульсионных каналов регулируют винтами качества смеси.

Читать еще:  Продукция газа модельный ряд грузовые

По мере открытия дроссельных заслонок количество топлива, подаваемого системами холостого хода, начинает уменьшаться и постепенно в работу вступают главные дозирующие устройства.

Компенсация обеднения смеси на средних нагрузках обеспечивается подачей воздуха через воздушные жиклеры главного дозирующего устройства в эмульсионные колодцы главных дозирующих устройств. Здесь расположены эмульсионные трубки с большим количеством отверстий. В зависимости от степени открытия дросельных заслонок уровень топлива в эмульсионных колодцах падает, в эмульсионных трубках увеличивается количество отверстий, подающих воздух, и смесь обедняется.

Следует отметить также, что в режиме средних нагрузок системы холостого хода работают совместно с главными дозирующими устройствами. Сечения воздушных и топливных жиклеров этих дозирующих устройств подобраны таким образом, чтобы обеспечить экономичный состав смеси во всем диапазоне средних нагрузок.

При полной нагрузке двигателя происходит обогащение горючей смеси за счет вступления в работу экономайзера с механическим приводом. Клапан экономайзера открывается с помощью привода тогда, когда дроссельные заслонки занимают вертикальное положение, т. е. полностью открыты. В этом случае дополнительное количество топлива поступает по специальному каналу в распылитель, обогащая смесь. Отверстия распылителя экономайзера расположены выше малых диффузоров, поэтому топливо будет поступать в смесительные камеры без компенсации, как в простейшем карбюраторе.

При резком нажатии на педаль управления дроссельными заслонками рычаг воздействует на шток ускорительного насоса, поршень насоса при этом перемещается вниз, обратный клапан закрывается и топливо через нагнетательный клапан и распылитель впрыскивается в смесительные камеры. Горючая смесь кратковременно обогащается. Для обеспечения затяжного впрыска на штоке ускорительного насоса установлена пружина.

В карбюраторе К-126Б имеется исполнительный механизм ограничителя максимальной частоты вращения коленчатого вала двигателя, который работает совместно с датчиком центробежного типа. Принцип работы и устройство ограничителя аналогичны принципу работы и устройству ограничителя карбюратора К-88А, устанавливаемого на двигатель автомобиля ЗИЛ-130.

Карбюраторы среднетоннажных грузовиков
Схемы, регулировочные параметры и рекомендации по обслуживанию

Мы рассказали о карбюраторах грузовых автомобилей легкого класса, дали их схемы, регулировочные параметры и рекомендации по обслуживанию. Карбюраторные двигатели на грузовиках среднего класса многие полагают анахронизмом, но огромное количество такой техники по-прежнему находится в эксплуатации.

Двухкамерные карбюраторы восьмицилиндровых V-образных двигателей ЗИЛ (К-88, К-89, К-90) и ГАЗ (К-135) и их модификации (рис. 1 и 2) имеют ряд принципиальных отличий от ранее рассмотренных систем. Главные из них — это параллельное открытие дроссельных заслонок и наличие ограничителя числа оборотов коленчатого вала.

Каждая камера карбюратора питает 4 цилиндра. Данное обстоятельстро определяет повышенные требования к точности регулировок, необходимых для обеспечения одинакового состав смеси в каждой группе. Система холостого хода подает струю эмульсии в задроссельное пространство, в зону, где воздух движется с небольшими скоростями и поэтому, в отличие от автономной системы карбюраторов К-131 и К-151, не может обеспечить хорошего распыления топлива. Часть топлива идет в виде пленки по стенкам впускного трубопровода, из-за чего состав смеси в различных цидиндрах сильно варьируется, а следовательно, двигатель имеет повышенные выбросы СО и СН с отработавшими газами.

Для выполнения норм по СО (1,5%) приходится так обеднять смесь, что в некоторых цилиндрах происходит неполное сгорание и увеличиваются выбросы СН. Именно из-за восьмицилиндровых двигателей ЗИЛ и ГАЗ допустимые нормы на СН пришлось увеличить увеличить при минимальной частоте вращения до 3000 частей на миллион и до 1000 – при повышенной.

Почему же на этих карбюраторах не применить автономную систему холостого хода, обеспечивающую идеальное распыление топлива? Мешает ограничитель числа оборотов, требующий установки обеих дроссельных заслонок на одной оси. В массовом производстве невозможно обеспечить плотное и равномерное прилегание заслонок к стенкам воздушного канала. Кроме того, на холостом ходу ось дроссельных заслонок прогибается и, как следствие, пришлось увеличить зазор между осью и перемычкой между камерами. В него также проходит воздух. В результате при закрытых заслонках основная часть воздуха поступает через них, и организовать распыливание топлива оставшейся частью воздуха не удается. Все это сильно затрудняет настройку карбюраторов в процессе эксплуатации.

Перед регулировкой карбюраторов необходимо проверить систему зажигания: угол опережения зажигания, состояние контактов и угол их замкнутого состояния, состояние низко- и высоковольтной проводки, а также и свечей зажигания. Затем проверяют уровень топлива в поплавковой камере и и состояние иглоьчатого клапана. При нарушении его герметичности необходимо заменить уплотнительную шайбу на игле.

В карбюраторах с параллельным открытием дроссельных заслонок равномерное распределение смеси по цилиндрам очень важно на нагрузочных режимах, поскольку именно они определяют минимальные эксплуатационные расходы. А потому именно для них необходимо в первую очередь обеспечить одинаковую регулировку обеих камер. Для этого нужно определить пропускную способность топливных и воздушных жиклеров главной дозирующей системы на специальном пневматическом или жидкостном стенде. При его отсутствии косвенным показателем пропускной способности жиклера может служить диаметр его отверстия (см. таблицу 1).

Зазоры между кромками дроссельных заслонок и стенками смесительной камеры должны быть одинаковыми. Если этого нет, следует, ослабив винты крепления дроссельных заслонок к оси примерно на один оборот, отвернуть упорный винт («винт количества»), закрыть заслонки до упора в стенки смесительной камеры, после чего затянуть крепежные винты. В результате произойдет самоустановка заслонок.

Хорошая динамика разгона обеспечивается насосом-ускорителем. При этом важна не только его производительность, но и равномерной подачи топлива в каждую из камер. Для проверки этого параметра карбюратор устанавливают на подставку с отверстиями так, чтобы под каждой смесительной камерой расположить мензурку. Далее производят 10 циклов: резкое открытие дроссельных заслонок до упора, а после прекращения подачи топлива их медленное закрытие для заполнения полости под плунжером. Результаты замера производительности ускорительного насоса сравнивают с табличными данными. При большой разнице в количестве впрыскиваемого топлива между камерами следует прочистить отверстия распылителей, а если этого недостаточно, то уточнить их проходные сечения разверткой.

Проверку и регулировку системы холостого хода на СО и СН следует начинать с режима повышенных оборотов nпов. При избыточной концентрации СО (более 2%) следует прежде всего прочистить воздушные жиклеры главной дозирующей системы и системы холостого хода. Если это не помогает, нужно или уменьшить топливные, или увеличить воздушные жиклеры холостого хода (см. рис. 1). Учитывая, что топливные жиклеры и так имеют очень малые проходные сечения во избежание их засорения у карбюраторов К-88, К-89, К-90 и их модификаций предпочтительно увеличить пропускную способность воздушных жиклеров холостого хода на 10-15%. После этого проверку концентрацию СО и СН при nпов повторяют. В случае необходимости — дополнительно увеличивают воздушные жиклеры.

И только добившись выполнения норм на СО и СН при nпов начинают регулировку при минимальной частоте вращения коленчатого вала на холостом ходу. Вращением «винта качества» одной из камер добиваются минимальной концентрации СН. Затем «винтом качества» второй камеры снова добиваются минимальной концентрации СН. После этого проверяют концентрацию СО. Как правило, она несколько превышает допустимую (1,5%). В этом случае следует, последовательно поворачивая винты качества на одинаковый угол, добиться снижения СО до нормы. При этом для восьмицилиндровых двигателей ЗИЛ и ГАЗ концентрация СН обычно несколько увеличивается. Поэтому после регулировки на СО необходимо проверить концентрацию СН, которая не должна превышать 3000 частей на миллион.

Причиной повышенной концентрации СН может быть износ двигателя и, соответственно, высокий угар масла.

Карбюраторы К-90 оборудованы экономайзерами принудительного холостого хода (ЭПХХ). В отличие от клапанов ЭПХХ рассмотренных ранее карбюраторов К-131 и К-151, перекрывающих при торможении двигателем подачу топливовоздушной смеси, в карбюраторах К-90 применен электромагнитный клапан, перекрывающий подачу топливной эмульсии в канал перед переходной системой, и потому его проходные сечения значительно меньше.

Схема подключения клапана также имеет принципиальные отличия от рассмотренных ранее карбюраторов: на режиме ПХХ блок управления включает обмотку клапана ЭПХХ к электроцепи и клапан перекрывает подачу эмульсии. Вместо микровыключателя карбюратор имеет контактную пластину на нижнем фланце и контакт на рычаге дроссельных заслонок. Благодаря такой конструкции при каких-либо нарушениях в системе управления клапаном ЭПХХ (обрыве цепи, окислении контактов и др.) двигатель на холостом ходу продолжает работать, и водитель не замечает неисправности, поскольку расход топлива увеличивается всего на 2-4%, а на шоссе практически не меняется.

Клапан ЭПХХ начинает работать только после прогрева системы охлаждения двигателя свыше 60 °С. На режиме свыше 1000 об/мин электронный блок включает цепь питания клапанов ЭПХХ. Однако если дроссельные заслонки приоткрыты, то контакты на упорном винте разомкнуты, электроцепь питания отключена и клапана ЭПХХ остаются открытыми. При частоте вращения свыше 1000 об/мин, когда водитель отпускает педаль «газа», электромагнитные клапаны перекрывают подачу эмульсии через систему холостого хода. При снижении частоты вращения до 1000 об/мин блок управления отключает цепь питания, клапаны открываются, и двигатель начинает работать на режиме холостого хода.

Проверку системы ЭПХХ можно произвести на прогретом двигателе при помощи лампы 12 Вольт мощностью не более 3 Вт, подключаемой вместо клапана. При повышении частоты вращения (свыше 1500 об/мин) лампа должна гореть. Если лампа не горит, следует убедиться, что проводка не нарушена и очистить контакты на карбюраторе и у датчиков. После резкого закрытия дроссельных заслонок и снижения частоты вращения меньше 1000 об/мин лампа должна гаснуть. Работу клапанов проверяют также по характерным щелчкам при их посадке во время резкого закрытия дроссельных заслонок после работы при повышенной частоте вращения (2000-2500 об/мин). Отдельно проверяется герметичность посадки каждого из клапанов, для чего их необходимо вывернуть и подключить к сети 12 вольт. На клапан одевается шланг, в который подается воздух или вода под небольшим давлением (например резиновой грушей).

Своевременный и грамотный уход за карбюраторами позволяет не только избежать пробле с экологической полицией, но и заметно снизить эксплуатационные расходы.

Впрочем, карбюратор — далеко не единственный виновник перерасхода топлива и повышенного содержания СО и СН в отработавшихъ газах. Большое значение имеет состояние системы питания двигателя воздухом.

В автомобилях ЗИЛ-431410, ЗИЛ-130К и ЗИЛ-131М воздух к воздушному фильтру подается по каналу, расположенному в усилителе капота двигателя. Это позволяет повысить мощностные показатели двигателя за счет подачи более холодного, чем в подкапотном пространстве, воздуха. Кроме того, наружный воздух, как правило, более чистый, что уменьшает засорение фильтра, увеличивает ресурс двигателя, способствует стабилизации его экологических и энергетических показателей. При этом необходимо следить за наличием заглушки в дополнительных отверстиях канала, чтобы предотвратить попадание воздуха из подкапотного пространства

В настоящее время главным образом применяются воздушные фильтры трех типов: масляно-инерционные, сухие с пористым сменным элементом и сухие инерционные (циклоны).

Достоинством масляно-инерционных фильтров является возможность их длительного использования без замены фильтрующего элемента. При засорении сопротивление меняется незначительно. Основной недостаток – относительно невысокая степень очистки воздуха: 95-97% при минимальном и 98,5-99% при максимальном расходе воздуха.

Читать еще:  Программа для диагностики грузовиков

Наилучшая очистка воздуха обеспечивается пористым материалом (бумагой, картоном или синтетическим). Эффективность очистки доходит до 99,5%. Недостатком таких фильтров является меньшая пылеемкость и заметное повышение сопротивления при засорении. Поэтому чаще приходится проверять степень их засоренности и своевременно заменять или очищать фильтрующий элемент.

Установить связь между пробегом автомобиля и повышением сопротивления воздушного фильтра довольно трудно. При езде в городе, по асфальтированному шоссе, в зимних условиях допустимый пробег часто превышает 15 тысяч километров. В то же время несколько десятков километров в условиях сильной запыленности могут довести сопротивление фильтра до предела.

Увеличение сопротивления ведет к ухудшению наполнения цилиндров двигателя, нарушению регулировок карбюратора, увеличению выброса СО и СН. При больших нагрузках и сопротивлении фильтра 5 кПа (около 40 мм рт.ст.) снижение максимальной мощности доходит до 5-8%, а максимального крутящего момента – до 3-5%. Увеличивается расход топлива. Оценка сопротивления воздушного фильтра производится при испытании двигателя на моторном стенде или автомобиля на роликовом стенде, а также при проверке фильтра на вакуумной установке. На некоторых автомобилях устанавливаются индикаторы вакуума, отрегулированные на заданную допустимую степень засорения фильтра (обычно 3.3-7,5 кПа). Индикаторы вакуума выпускаются для тяжелых грузовиков, но часто их устанавливают на автомобили среднего и малого тоннажа.

Элемент картонного фильтра, достигший предельной запыленности, должен быть заменен на новый. При этом следует обратить внимание на плотность прилегания уплотняющих поясков к корпусу фильтра по всему периметру и герметичность заделки торцов картонного или синтетического элемента. При отсутствии сменного элемента он может быть частично восстановлен путем продувки его сжатым воздухом со стороны внутренней полости (при наличии предочистителя продувка производится отдельно). В отдельных случаях элемент фильтра промывается беспенным моющим раствором и тщательно просушивается.

После продувки пылеемкость в среднем восстанавливается наполовину, а после промывки -на 60%, поэтому срок службы после регенерации соответственно сокращается. Элементы фильтра из синтетического материала допускают многократную промывку — до 10 раз.

В связи с невысокой пылеемкостью фильтров из пористого материала для автомобилей, работающих в условиях высокой запыленности воздуха, существуют двух- и трехступенчатые фильтры. Как правило, первая ступень – это циклон или масляно-инерционный фильтр, вторая и третья ступени это сухие пористые фильтры.

Необходимо периодически проверять герметичность соединения воздушных каналов, шлангов системы вентиляции картера, установки фильтрующих элементов, уплотнений фланцев карбюратора и впускного трубопровода. При смене фильтра на изношенном двигателе требуется проверить, нет ли течи масла через сальники на повышенных оборотах коленчатого вала: давление в картере увеличилось, и появилась вероятность течи масла через изношенные сальники и неплотные соединения.

В системе топливоподачи необходимо периодически проверять степень засоренности топливных фильтров. При их засорении особенно в жаркое время возникают паровые пробки, приводящие к нарушению топливоподачи.

Принцип работы и устройство карбюратора

Карбюратор – это обязательный узел питания двигателя внутреннего сгорания автомобилей и мотоциклов. До конца XX века карбюраторы устанавливались на большинство автомобилей, но в наши дни их прочно вытеснили более удобные и функциональные инжекторные системы. Сейчас они часто встречаются в автомобилях возрастом 20 и более лет.
Содержание статьи:

Принцип работы и устройство простейшего карбюратора

В первом устройстве, изобретенном Л. Христофорисом в 1876 году, топливо нагревалось, испарялось, образовавшиеся пары и потоки воздуха смешивались. Спустя год решение усовершенствовали, использовав принцип топливного распыления, который стал основой для следующих проектов.

До широкого распространения привычных нам устройств были барботажные модели и мембранно-игольчатые. Первые — в виде бензинового бака, в котором близко от поверхности располагалась доска и пара патрубков для подачи из атмосферы и забора смеси топлива и воздуха в мотор. Воздух перемещался под доской, непосредственно над топливом, обогащался парами и становился горючей смесью. Это была простая, но рабочая система. Дроссельная заслонка находилась отдельно. На функционирование мотора с барботажным узлом влияли природные условия — испаряемость зависела от температуры. Такую систему было сложно регулировать, она была взрывоопасна.
Схема барботажного карбюратора.

Мембранно-игольчатое устройство размещается отдельно от бензобака. В нем было нескольких камер, жестко связанных с помощью штока. Седло клапана, через который подавалось топливо, запиралось иглой на штоке. Камеры были соединены топливным каналом и смесительной зоной. Параметры устройства определяли пружины, на которые надавливали мембраны. Такой карбюратор работал независимо от условий на улице и местоположения, был популярен в начале 19 века, когда его устанавливали на автомобилях и мототехнике, в самолетах с поршневыми моторами внутреннего сгорания.
Схема мембранно-игольчатого карбюратора.

Устройство карбюратора наших дней

Сегодня используются поплавковые модели, которые являются самыми усовершенствованными. Их можно увидеть на большинстве машин.
Устройство и работа карбюратора: 1 — регулировочный винт пускового устройства; 2 — штифт рычага 24, входящий в паз рычага 3; 3 — рычаг управления воздушной заслонкой; 4 — винт крепления тяги привода воздушной заслонки; 5 — регулировочный винт приоткрывания дроссельной заслонки первой камеры; 6 — рычаг дроссельной заслонки первой камеры; 7 — ось дроссельной заслонки первой камеры; 8 — рычаг привода дроссельной заслонки второй камеры; 9 — регулировочный винт количества смеси холостого хода; 10 — ось дроссельной заслонки второй камеры; 11 — рычаг дроссельной заслонки второй камеры; 12 — патрубок отсоса картерных газов в задроссельное пространство карбюратора; 13 — дроссельная заслонка второй камеры; 14 — выходные отверстия переходной системы второй камеры; 15 — корпус дроссельных заслонок; 16 — распылитель главной дозирующей системы второй камеры; 17 — малый диффузор; 18 — корпус топливного жиклера переходной системы второй камеры; 19 — распылитель ускорительного насоса; 20 — патрубок подачи топлива в карбюратор; 21 — распылитель эконостата; 22 — воздушная заслонка; 23 — шток пускового устройства; 24 — рычаг воздушной заслонки; 25 — крышка пускового устройства; 26 — штифт рычага 24, действующий от штока 23 пускового устройства; 27 — ось воздушной заслонки; 28 — крышка карбюратора; 29 — трубка с топливным жиклером эконостата; 30 — топливный фильтр; 31 — игольчатый клапан; 32 — эмульсионная трубка второй камеры; 33 — поплавок; 34 — главный топливный жиклер второй камеры; 35 — перепускной жиклер ускорительного насоса; 36 — рычаг привода дроссельных заслонок; 37 — рычаг привода ускорительного насоса; 38 — диафрагма ускорительного насоса; 39 — регулировочный винт качества (состава) смеси холостого хода; 40 — патрубок забора разрежения вакуумного регулятора опережения зажигания. 41 — корпус карбюраторов. 42 — электромагнитный запорный клапан; 43 — регулировочный винт добавочного воздуха заводской подрегулировки системы холостого хода; 44 — диафрагма пускового устройства.

Поплавковый карбюратор состоит из множества элементов:

  • Поплавковая камера для сохранения горючего на заданном уровне.
  • Поплавок, оснащенный специальной иглой, который используется для дозирования уровня бензина.
  • Смесительная камера ― для смешения топлива в мелкодисперсном виде с воздухом.
  • Диффузор — зауженное место для увеличения скорости воздуха.
  • Распылитель, оснащенный жиклером, который соединяет камеры, подает смесь в диффузор.
  • Заслонка дросселя — для регулировки потока рабочей жидкости.
  • Воздушная заслонка — для регулировки потока воздуха, поступающего в карбюратор. С помощью элемента создают смесь «обогащенную», «нормальную» или «бедную».
  • Система холостого хода — подает горючее мимо смесительной камеры по спецканалам в задроссельное пространство.
  • Эконостаты и экономайзеры — обеспечивают дополнительную подачу топлива при существенных нагрузках. Эконостаты работают от разрежения воздуха, экономайзерами управляют принудительно.
  • Подсос горючего — для принудительного обогащения топливной смеси. С помощью рычага водитель приоткрывает дроссельную заслонку, воздух проходит сквозь смесительную камеру и забирает больше горючего. В результате смесь становится обогащенной, помогает запустить холодный двигатель.

Принцип работы карбюратора

Сначала горючее направляется в поплавковую камеру. В момент достижения необходимого уровня поплавок поднимается и перекрывает клапан, через который подается топливо. Когда поплавок опускается, подача топлива возобновляется.

Далее топливо идет в смесительную камеру, где создается горючая смесь. Сверху подается воздух, который соединяется с горючим. В камере находится распылительная трубка с жиклером, а также дроссель и диффузор. Жиклер — это пробка, которая не допускает вытекание топлива из поплавковой камеры. Заслонка, соединенная с педалью, называется дросселем. При надавливании ногой, она открывается, и горючая смесь попадает в цилиндр. В результате машина набирает скорость. В диффузоре находится распределительная трубка.

В момент запуска в смесительной камере формируется разрежение, из распылителя разбрызгивается топливо. Поднимается поток воздуха, который при смешении с топливом, переносит горючее в цилиндр.

В новейших устройствах помимо смесительной и поплавковой камер, находится также пусковое и дозирующее устройство, конструкция холостого хода, экономайзер, ускорительный насос. Устаревшие модели не обеспечивают полноценную работу мотора, поскольку в зависимости от того, холодный или горячий двигатель, смесь должна быть разной. Если запускают холодный двигатель, требуется горючая смесь, обогащенная топливом. В случае, когда мотор долго работал, необходима смесь с небольшим включением топлива.

Для увеличения скорости или езды в нагруженной машине, нужна смесь, сильно обогащенная топливом. Аналогичная ситуация при движении на холостом ходу, на малых оборотах. Такие условия простой карбюратор обеспечить не в силах.

С целью обогащения смеси топливом применяют насос-ускоритель. Когда резко выжимают педаль, проходит воздух, который движется быстрее топлива. С этим связана нехватка топлива в горючей жидкости. При наличии насоса силовой агрегат работает мощнее.

Система холостого хода идеальна для малых оборотов. При таком режиме силовой агрегат функционирует на обогащенной смеси. Однако, одной дозирующей системы недостаточно, ведь на холостом ходу дроссель открывается лишь частично. В новейших карбюраторах горючая смесь формируется около дросселя, поскольку в этом месте, даже если дроссель открыт не полностью, создается необходимое разрежение.

Для запуска мотора требуется смесь, которая обогащена топливом. С этой целью в смесительной камере предусмотрена заслонка с клапаном, через который проходит воздух. На приборной панели автомобиля есть ручка для управления клапаном. При вытягивании ручки клапан приоткрывается, и объем воздуха в смесительной камере сокращается. А количество горючего в смеси возрастает. В результате даже первые порции смеси достаточно насыщены, и мотор быстро заводится. При наличии спускового устройства двигатель работает даже при пониженных температурах.

Возможности дозирующего устройства позволяют создавать смесь, подходящую для работы двигателя в разных режимах. С помощью системы автоматически регулируется состав смеси при работе мотора с малой и средней нагрузкой. В таком режиме топливо подается через дозирующую систему. Однако, даже при полном открытии дросселя горючего часто недостаточно. По этой причине, когда дроссель практически полностью открыт, рычаг, соединенный с ним, воздействует на тягу привода экономайзера — так открывается дополнительный проход из поплавковой камеры. В итоге двигатель функционирует более мощно.

Читать еще:  Уаз буханка грузовой

Классификация карбюраторов

Все карбюраторы можно различать по следующим признакам:

  • По направлению движения потока различают горизонтальные и вертикальные модели.
  • По регулировке отверстия распылителя и формированию разрежения разделяют: системы с постоянным разрежением; с постоянным сечением (серийные устройства); с золотниковым дросселированием — модели для мототехники, в них вместо дроссельной заслонки объем поступающей смеси регулирует шибер-золотник.
  • По числу смесительных камер выпускают одно- и многокамерные модели. «Сдвоенные» устройства используются в моторах с цилиндрами, которые находятся далеко друг от друга. В результате каждая половина осуществляет впрыск в свои цилиндры.

Карбюраторы двигателей грузовых автомобилей

На V-образном двигателе автомобиля ЗИЛ-130 и его мо­дификациях устанавливается балансированный карбюратор К-88АМ (рис.38), имеющий две смесительные камеры, каж­дая из которых предназначена для питания одного ряда цилиндров. Карбюратор состоит из четырех основных частей: корпуса 10 воздушной горловины, корпуса 6 поплавковой камеры и диффузоров, корпуса 51 смесительных камер и пневмоинерционного ограничителя 42 максимальной частоты вращения коленчатого вала. Для балансировки карбюратора слу­жит канал 28, соединяющий воздушную горловину с поплавковой камерой 55, вследствие чего в них уравновешивается давление и устраняется влияние загрязнения воздухоочистителя на состав горючей смеси. Если поплавковая камера не сбалансирована, т.е. сообщается непосредственно с атмосфе­рой, то при увеличении сопротивления воздухоочистителя вследствие его загрязнения возрастает разрежение в диффузоре, и горючая смесь значительно обогащается.

Поддержание необходимого состава обедненной горючей смеси в карбюраторе достигается путем торможения топлива воздухом. С этой целью смесительные камеры имеют самостоятельные главные дозирующие устройства с входящими в них воздушными жиклерами 19, а также малым 21 и боль­шим 62 диффузорами, улучшающими процесс смесеобразова­ния вследствие повышения в них скорости воздуха. Каждая смесительная камера имеет самостоятельную систему холос­того хода с питанием из колодцев 57 жиклера 61 полной мощности. Общими для обеих камер карбюратора являются горловина с воздушной заслонкой 23, поплавковая камера 55 с поплавком 31 и запорным клапаном 33, экономайзер 1 и ускорительный насос 5 с форсункой 26. В обеих смеситель­ных камерах дроссельные заслонки 63 закреплены на одной оси 68 и открываются одновременно.

Управление дроссельными заслонками 63 производится из кабины водителя педалью 6 (см. рис. 36) или рукояткой 5, а управление воздушной заслонкой — с помощью рукоятки 4. Обе смесительные камеры карбюратора работают одновремен­но, и их процессы смесеобразования одинаковы, поэтому ра­боту карбюратора рассмотрим на примере работы одной из смесительных камер (рис.38).

Работа карбюратора. При пуске и прогреве двига­теля воздушную заслонку 23 (рис.38) закрывают, а так как она конструктивно через систему тяг связана с осью 68 дроссельной заслонки 63, то последняя несколько приоткры­вается. Таким образом, в смесительной камере создается разрежение, что обеспечивает обогащение горючей смеси вследствие интенсивного истечения топлива из кольцевой ще­ли 20 малого диффузора 21 и эмульсии из отверстий 59 и 60 канала 30 холостого хода. Наряду с этим обогащение го­рючей смеси происходит вследствие нескольких нажатий на педаль дроссельной заслонки, в результате чего поршень 7 ускорительного насоса перемещается вниз и дополнительно через форсунку 26 впрыскивает топливо в малый диффузор 21

В момент начала работы двигателя в случае несвоевре­менного открытия воздушной заслонки 23, под действием разности давлений открывается предохранительный клапан 22, что предотвращает сильное обогащение горючей смеси.

При малой частоте вращения коленчатого вала на режиме холостого хода дроссельная заслонка 63 прикрыта, поэтому разрежение в диффузоре недостаточно для истечения топлива.

Максимальное разрежение создается за дроссельной за­слонкой; оно передается через отверстия 60 и 59 в эмуль­сионный канал 30 и к жиклеру 16 холостого хода. Под дей­ствием этого разрежения топливо из поплавковой камеры 55 через главный жиклер 56 и колодец 57 жиклера полной мощности поступает в колодец 17, а затем к жиклеру 16 холостого хода. При этом необходимый для образования эмульсии воздух поступает из воздушной горловины через верхнее отверстие жиклера 16 холостого хода, а также из воздушного жиклера 19 и жиклера 61 полной мощности.

Образовавшаяся богатая горючая смесь движется по кана­лу 30, в конце которого к ней дополнительно подсасывается воздух из верхнего щелевидного отверстия 59, и через ниж­нее отверстие 60 эмульсия поступает в пространство смеси­тельной камеры за дроссельной заслонкой и далее в цилинд­ры двигателя.

По мере открытия дроссельной заслонки увеличивается разрежение у верхнего отверстия 59, и эмульсия начинает поступать из обоих отверстий. Этим достигается плавный пе­реход двигателя от работы на режиме холостого хода к ра­боте под нагрузкой, которая обеспечивается главной дозирую­щей системой.

При работе двигателя на холостом ходу качество горючей смеси регулируют винтом 58, а частоту вращения коленчато­го вала — ввернутым, в корпус привода карбюратора упорным винтом, изменяющим степень прикрытия дроссельной заслонки.

При малых и средних нагрузках двигателя переход от режима холостого хода к режиму частичных нагрузок происходит по мере открытия дроссельной заслонки. При этом система холостого хода плавно прекращает подачу эмульсии, а так как разрежение и скорость воздуха в диффузорах возрастают, то в работу вступает главная дозирующая система. К топливу, поступающему из поплавковой камеры через главный жиклер 56 и жиклер 61 полной мощности, подмешивается воздух из воздушного жиклера 19. Образовав­шаяся при этом эмульсия поступает в кольцевую щель 20 малого диффузора 21. С увеличением разрежения в малом диффузоре компенсация состава горючей смеси достигается поступлением дополнительного воздуха из жиклера 16 холостого хода, вследствие чего уменьшается разрежение около жиклера 61 полной мощности и в колодце 57. Таким обра­зом, воздух, поступающий через воздушные жиклеры 19 и 16, тормозит истечение топлива из главного жиклера 56, и горючая смесь обедняется до необходимого состава.

При больших нагрузках двигателя обогащение горючей смеси производится экономайзером 1 с механичес­ким приводом, состоящим из кинематически связанных рычага 69 и штока 8, на конце которого закреплена планка 11. При открытии дроссельной заслонки 63 более чем на 85% планка 11 перемешается вниз и через направляющую 15 и пружину 14 нажимает на шток 13, который, воздействуя на толка­тель 3, открывает шариковый клапан 2 экономайзера, и до­полнительное количество топлива поступает по каналу 64 к жиклеру 61 полной мощности. Вследствие этого происходит обогащение горючей смеси, и двигатель развивает полную мощность.

При резком открытии дроссельных заслонок (режим ускорения) кратковременное обогащение горючей сме­си происходит в результате подачи дополнительного топлива из колодца ускорительного насоса 5, а также резервного топ­лива, находящегося в колодце 57 над жиклером 61. Резкое открытие дроссельной заслонки сопровождается быстрым пе­ремещением штока 8 и планки 11 вниз. При этом давление под поршнем 7 возрастает, обратный шариковый клапан 4 за­крывается, а топливо из колодца по каналу 67 через иголь­чатый клапан 66 поступает в колодец 65 форсунки 26. За­тем через жиклер 27 форсунки топливо подается в смеси­тельную полость 25, где оно смешивается с воздухом и в виде тонких струй впрыскивается через распылитель 24 в смесительную камеру для обогащения горючей смеси.

Связь поршня 7 с планкой 11 осуществляется через пру­жину 12, которая необходима для обеспечения затяжного впрыскивания топлива. Установка нагнетательного игольчато­го клапана 66 исключает возможность поступления воздуха под поршень 7 при его быстром подъеме, а также устраняет подсасывание топлива из колодца ускорительного насоса на средних и больших нагрузках двигателя при постоянном поло­жении дроссельной заслонки.

Пневмоинерционный ограничитель. Пневмоинерционный ог­раничитель 42 (рис.38) максимальной частоты вращения ко­ленчатого вала двигателя ЗИЛ-130 состоит из центробеж­ного датчика инерционного типа и исполнительного механизма с вакуумно-диафрагменным приводом на ось дроссельных заслонок.

Центробежный датчик установлен на крышке распре­делительных шестерен. В корпусе 35 датчика, закрытом пластмассовой крышкой, установлен ротор 40; его валик 38 в передней части уплотнен сальником. На этом же конце ва­лика имеется паз для концевого выступа узла привода рото­ра от распределительного вала. Пустотелый конец валика ротора вращается в металлокерамической втул­ке, смазка к которой поступает от фитиля, пропитанного маслом.

Исполнительный механизм установлен на корпусе 51 смесительных камер. Между разъемными плоскостями Крышки 44 и корпуса 45 вакуумной камеры установлена мембрана 43, соединенная с верхним концом штока 46. На оси 68 дроссельных заслонок установлен рычаг 49, соединенный одним плечом с нижним концом штока 46, а другим -с пружиной 50, под действием которой поворачивается рычаг 49 и удерживает дроссельные заслонки 63 в открытом положении. Так как ось 68 может проворачиваться на некоторый угол относительно валика рычага привода заслонок из-за их шарнирно-вильчатого соединения, то при срабатывании ограничителя дроссельные заслонки прикрываются независимо от положения педали управления подачей топлива. Таким образом, прикрытие дроссельных заслонок не зависит от положе­ния рычага, связанного с педалью управления подачей топлива. Пространство над мембраной 43 вакуумной камеры с помощью трубопровода 41 и канала 34 сообщается с полостью ротора 40, а через канал 48, жиклеры 47, 52 и каналы 54, 53 это же пространство соединяется со смесительной каме­рой карбюратора. Пространство под мембраной через канал 29 постоянно сообщается с воздушным патрубком карбюратора. Работа ограничителя. Если частота вращения коленчатого вала двигателя не превышает максимального значения, то ро­тор 40 (рис.38) датчика, вращаясь, не развивает достаточ­ной центробежной силы, и клапан 36, удерживаясь пружиной 39, не закрывает отверстие седла 37 клапана. При этом пространство над мембраной 43 сообщается с воздушной гор­ловиной через трубопровод 41, канал 34, полость ротора 40 и трубопровод 18, а пространство под мембраной — через ка­нал 29. Таким образом, давление воздуха снизу и сверху мембраны 43 одинаковое, и шток 46 не воздействует на ме­ханизм привода дроссельных заслонок.

При частоте вращения коленчатого вала свыше 3100 +100 об/мин клапан 36 развивает значительную центробежную силу, при этом пружина 39 растягивается, и клапан закрывает отверстие в седле 37, перекрывая доступ воздуха из воздушной горловины в пространство над мембраной 43. Последнее через канал 48 и жиклеры 47 и 52 сообща­ется со смесительной камерой карбюратора, вследствие чего в этом пространстве создается разрежение. Так как прост­ранство под мембраной через канал 29 соединяется с воз­душной горловиной, то давление под мембраной становится выше давления над ней. Из-за разности давлений мембрана 43 поднимается вверх вместе со штоком 46, который, преодолевая натяжение пружины 50, перемешает рычаг 49 и при­крывает дроссельные заслонки 63. Вследствие прикрытия дроссельных заслонок уменьшается количество горючей сме­си, поступающей в цилиндры, и обеспечивается поддержание максимальной частоты вращения коленчатого вала в заданных пределах (3100-3200 об/мин).

На V-образных восьмидилиндровых двигателях ЗМЗ-53 автомобилей ГАЗ-53А и их модификациях устанавливают кар­бюраторы К-126Б, которые по устройству и принципу дейст­вия смесеобразующих систем, а также конструкции ограничи­теля максимальной частоты вращения коленчатого вала ана­логичны карбюратору К-88АМ.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector